LITERATURE DETAILS   |   MAPPING DATA   |   EXPERIMENTAL DATA   |   MAPS RELATION DATA   |   DOWNLOAD PDF

Change literature

Edit literature details
* First time you log in, please close the new tab and click on again.

Literature details:

Zoom

Authors list Dell Leigh-Anne
Innocenti Giorgio M
Hilgetag Claus C
Manger Paul R
Title Cortical and thalamic connectivity of occipital visual cortical areas 17, 18, 19, and 21 of the domestic ferret (Mustela putorius furo)
Year 2019
Journal Journal of Comparative Neurology
Number Or Chapter
Page Number
Abstract The present study describes the ipsilateral and contralateral corticocortical and corticothalamic connectivity of the occipital visual areas 17, 18, 19, and 21 in the ferret using standard anatomical tract-tracing methods. In line with previous studies of mammalian visual cortex connectivity, substantially more anterograde and retrograde label was present in the hemisphere ipsilateral to the injection site compared to the contralateral hemisphere. Ipsilateral reciprocal connectivity was the strongest within the occipital visual areas, while weaker connectivity strength was observed in the temporal, suprasylvian, and parietal visual areas. Callosal connectivity tended to be strongest in the homotopic cortical areas, and revealed a similar areal distribution to that observed in the ipsilateral hemisphere, although often less widespread across cortical areas. Ipsilateral reciprocal connectivity was observed throughout the visual nuclei of the dorsal thalamus, with no contralateral connections to the visual thalamus being observed. The current study, along with previous studies of connectivity in the cat, identified the posteromedial lateral suprasylvian visual area (PMLS) as a distinct network hub external to the occipital visual areas in carnivores, implicating PMLS as a potential gateway to the parietal cortex for dorsal stream processing. These data will also contribute to a macro connectome database of the ferret brain, providing essential data for connectomics analyses and cross-species analyses of connectomes and brain connectivity matrices, as well as providing data relevant to additional studies of cortical connectivity across mammals and the evolution of cortical connectivity variation.
DOI web link Click here to open in new window